In 1798, Carl Friedrich Gauss counted the number of solutions modulo various primes $p$ of the equation $a^3 + b^3 + c^3 = 0$, and found a surprising connection with the ability to write the prime in the form \, p = a_p^2 + 27 \, b_p^2$ for some integers $a_p$ and $b_p$. In 1846, Ernst Eduard Kummer gave a careful study of Gauss' proof using the...
Creator:
Goins, Edray Herber (Purdue University)
Created:
2015-03-27
Contributed By:
University of Minnesota, Institute for Mathematics and its Applications.